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Abstract. Component- and service-based software engineering ap-
proaches have been gaining popularity in high-performance scientific
computing, facilitating the creation and management of large multidis-
ciplinary, multideveloper applications, and providing opportunities for
improved performance and numerical accuracy. These software engineer-
ing approaches enable the development of middleware infrastructure for
computational quality of service (CQoS), which provides performance
optimizations through dynamic algorithm selection and configuration
in a mostly automated fashion. The factors that affect performance are
closely tied to a component’s parallel implementation, its management
of parallel communication and memory, the algorithms executed, the
algorithmic parameters employed, and other operational characteris-
tics. We present the design of a component middleware CQoS archi-
tecture for automated composition and adaptation of high-performance
component- or service-based applications. We describe its initial imple-
mentation and corresponding experimental results for parallel simula-
tions involving time-dependent nonlinear partial differential equations.

1 Introduction

As computational science progresses toward ever more realistic multiphysics
and multiscale applications, no single research group can effectively develop,
select, or tune all of the components in a given application, and no single tool,
solver, or solution strategy can seamlessly span the entire spectrum efficiently.
Component- and service-based software development approaches help manage
some of the complexity of developing such large scientific applications. Current
component and service specifications, however, provide support only for basic
manipulation of components and services, such as repositories, instantiation,
connection, and execution. Common component interfaces and service speci-
fications enable easy access to suites of independently developed algorithms
and implementations, and dynamic composability facilitates switching among
different implementations during runtime. The challenge then becomes how to
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automatically make sound choices from among the available implementations
and parameters, with suitable tradeoffs among performance, accuracy, math-
ematical consistency, and reliability. Such choices are important both for the
initial composition and configuration of an application and for adaptive control
during runtime.

With the increased availability of solution methods implemented as compo-
nents or services, a major challenge is to ensure that the choice of one of many
implementations of a particular interface produces a result of the desired quality
within a reasonable amount of time. One can address this challenge by automat-
ing at least some of the process of selecting and configuring components, with
the goal of minimizing execution time within a set of quality constraints. In or-
der to provide such support, a specification is needed that describes the quality
metrics, i.e., metadata for functional and nonfunctional properties and require-
ments of components. Furthermore, the performance of components must be
monitored and recorded in a nonintrusive fashion. In addition, the performance
data must be analyzed in order to construct performance models of individual
components and whole applications, which can then be used by heuristics that
take into account performance information and quality constraints in order to
compose and adapt applications in an optimized fashion.

Computational Quality of Service. We are addressing this challenge by develop-
ing a high-level specification and corresponding middleware for computational
quality of service (CQoS) [49], or the automatic selection and configuration of
components to suit a particular computational purpose. CQoS extends the fa-
miliar concept of quality of service (QoS) in networking with domain-specific
quality metrics and the ability to specify and manage characteristics of the
application in a way that adapts to the changing computational environment.
Traditional QoS emphasizes system-related performance effects such as CPU
or network loads to implement application priority or bandwidth reservation in
networking. Although performance is a shared general concern, high efficiency
and parallel scalability are more significant requirements for high-performance
scientific applications, along with algorithmic or problem-specific qualities, such
as the level of solution accuracy achieved by a particular algorithm. This situa-
tion has motivated us to define an expanded notion of CQoS that better reflects
the characteristics and needs of high-performance component- or service-based
scientific applications.

Common Component Architecture. While our goal is a component-neutral or
service-model-neutral CQoS architecture, our work to date on implementing
CQoS middleware employs the Common Component Architecture (CCA) [4,
7, 17], which is designed specifically for the needs of parallel, scientific high-
performance computing (an area where other component approaches are lim-
ited). A comprehensive description of the CCA, including a discussion of how
it differs from other component models, is available [7]; here we present a brief
overview of the CCA environment, focusing on the aspects most relevant to
CQoS infrastructure.
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The specification of the Common Component Architecture [16] defines the
rights, responsibilities, and relationships among the various elements of the
model. Briefly, the elements of the CCA model are as follows:

– Components are units of software functionality that can be composed together
to form applications. Components encapsulate much of the complexity of the
software inside a black box and expose only well-defined interfaces.

– Ports are the abstract interfaces through which components interact. Specif-
ically, CCA ports provide procedural interfaces that can be thought of as
a class or an interface in object-oriented languages, or a collection of sub-
routines, or a module in a language such as Fortran 90. Components may
provide ports, meaning that they implement the functionality expressed in a
port (called provides ports), or they may use ports, meaning that they make
calls on a port provided by another component (called uses ports). Compo-
nents that provide the same port(s) are considered functionally equivalent
and can thus be used interchangeably.

– Frameworks manage CCA components as they are assembled into applica-
tions and executed. The framework is responsible for instantiating compo-
nents, destroying instances, and connecting uses and provides ports without
exposing the components’ implementation details. The framework also pro-
vides a small set of standard services that are available to all components.
The CCA implementation of the CQoS infrastructure described in this paper
relies on the CCA specification and basic services to provide new middleware
components for performance monitoring, analysis, and dynamic application
adaptation.

Paper Organization. The remainder of this paper introduces our component
middleware architecture for CQoS. Section 2 discusses related work, and Sec-
tion 3 introduces several high-performance scientific applications that motivate
this research, with emphasis on simulations involving the parallel solution of
time-dependent, nonlinear partial differential equations (PDEs). Section 4 de-
scribes our approach and implementation, and Section 5 presents preliminary
experimental results. Section 6 discusses conclusions and directions of future
work.

2 Related Work

Adaptive software for scientific computing is an area of emerging research, as
evidenced by numerous recent projects and related work [14, 18, 21–26, 31, 35,
36, 39, 40, 43, 53, 55, 57, 60, 62–66, 69]. Many approaches to addressing different
aspects of adaptive execution are represented in these projects, from compiler-
based techniques to development of new numerical adaptive algorithms.

Three approaches of interest for specifying semantic information are mod-
els, contracts, and service-level agreements. Furmento et al. [28] as well as Gu
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and Nahrstedt [30] discuss performance models and their use in overall com-
ponent application assembly at runtime within the context of distributed envi-
ronments; Beugnard et al. [8] define a general model of software contracts and
discuss approaches for making components contract-aware. Similarly, the SAM-
code model of adaptable mobile agents [1] allows the specification of contracts
— consisting of one precondition and one postcondition — for each adapt-
able method. Violations are used to select from different implementations of a
method at runtime. The GlueQoS work of Wohlstadter et al. [68] focuses on
mediating quality-of-service requirements — specified as assertions — between
clients and Web services. Bennett et al. [6] discuss the need for service-level
agreements for defining the terms and conditions of use, with agreements pro-
viding a minimum of coupling between components. They also emphasize the
importance of characterizing relevant component features to ensure both the
correct use and provision of services. Raje et al. [50] describe a QoS framework
for distributed, heterogeneous components and provide a catalog of QoS met-
rics [13]. The Software-Implemented Fault Tolerance (SIFT) environment for
Adaptive Reconfigurable Mobile Objects of Recovery (ARMOR) processes [67]
relies on their model for functional reconfiguration to adjust application behav-
ior to meet dependability requirements. In this case adaptation is accomplished
through user-specified assertion checks at critical execution points and the use
of microcheckpointing to adjust application state accordingly.

In the area of dynamic adaptation based on monitoring application behavior,
Reiner and Pinkerton [52] explore dynamically changing control parameters to
improve operating system performance and use experiments to determine im-
proved settings. They develop a methodology for adaptive tuning as well as
algorithm, policy, and (fixed) parameter selection. Whisnant et al. [67] rely on
human intervention to deal with reconfiguration after a problem is detected at
runtime. Feather et al. [27], however, use event monitoring of behavioral devi-
ations and changing environmental conditions to reconcile the intended system
behavior with individual requirements at runtime. In these cases, monitoring
an application at runtime involves checking control parameters and monitoring
events, including application failure.

Unlike these efforts, our approach is specifically targeted at large-scale paral-
lel computations and relies on high-level interface specifications and technologies
tailored for scientific computing. In designing our CQoS interfaces and mid-
dleware components, we rely on the existing high-performance infrastructure
provided by the CCA, in which multiple component implementations conform-
ing to the same external interface standard are interoperable and the runtime
system ensures that the overhead of component substitution is negligible.

3 Motivating Applications and Algorithms

As discussed in [45], a variety of high-performance scientific applications mo-
tivate the development of infrastructure for computational quality of service,
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including mesh partitioning in combustion simulations [58,59], resource manage-
ment in quantum chemistry [38], and the solution of linear systems that arise in
nonlinear PDE-based simulations in domains such as high-energy accelerators,
computational fluid dynamics, and radiation transport. A common feature of
these large-scale, long-running simulations is the combination of diverse numeri-
cal capabilities, such as physics models, discretizations, linear solvers, nonlinear
solvers, and optimization solvers, each having multiple implementations with
varying degrees of fidelity, robustness, efficiency, and scalability. Moreover, it
is not generally known a priori which combination of implementations will be
best suited for a particular problem instance and computational environment.

Before explaining in Section 4 our approach to handling these issues with
CQoS middleware, we briefly introduce two parallel PDE-based applications in
which a significant fraction of overall execution time is devoted to the solution of
large-scale, sparse linear systems. In this context, CQoS focuses on selecting and
configuring linear solvers (typically preconditioners and Krylov methods) based
on the context of the overall simulation. Because the properties of linear systems
in time-dependent or nonlinear applications may significantly change during
the course of a simulation, CQoS-enabled adaptive multimethod solvers have
promise to improve robustness and reduce overall time to solution [10–12, 44].
Section 5 presents experimental results of CQoS-enabled adaptive linear solvers
for these two applications.

Transonic Euler Flow. We consider the solution of the unsteady compressible
three-dimensional Euler equations using PETSc-FUN3D [3], an unstructured
mesh code originally developed by W. K. Anderson [2] and subsequently paral-
lelized using MeTiS [34] for mesh partitioning and the PETSc library [5] for the
preconditioned Newton-Krylov family of implicit solution schemes. This code
uses a finite volume discretization with a variable-order Roe scheme on a tetra-
hedral, vertex-centered mesh; details of the discretization and parallelization are
discussed in [3]. We explore the standard aerodynamics test case of transonic
flow over an ONERA M6 wing using the frequently studied parameter combina-
tion of a freestream Mach number of 0.839 with an angle of attack of 3.06o. The
robustness of solution strategies is particularly important for this model because
of the so-called λ-shock that develops on the upper wing surface, as depicted
in Figure 1. The PDEs are initially discretized by using a first-order scheme;
but once the shock position has settled down, a second-order discretization is
applied.

Radiation Transport. Under the assumptions of isotropic radiation with no
frequency dependence, transport through a material characterized by spatially
varying atomic number (Z) and thermal conductivity (κ) can be modeled by
the following coupled nonlinear equations in radiation energy density (E) and
material temperature (T ):

∂E

∂t
−∇ · (DE∇E) = σa(T 4 − E),

∂T

∂t
−∇ · (DT∇T ) = −σa(T 4 − E) (1)
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Fig. 1. Mach contours on the ONERA M6 wing at freestream Mach number = 0.839.

with
σa =

Z3

T 3
, DE(E, T ) =

1
3σa + |∇E|

|E|

, and DT (T ) = κT
5
2 . (2)

In order to restrict the maximum speed of propagation to the speed of light,
the above formula for diffusivity DE includes Wilson’s flux limiter |∇E|/|E|
[29, 46], which makes these governing equations highly nonlinear. The spatial
discretization in [29] employs Galerkin finite elements with linear piecewise
continuous basis functions over simplices in 2D and 3D. Temporal integration
is done by a solution-adaptive implicit Euler method. This code shows excellent
scalability on the TeraGrid, Blue-Gene, and System X platforms [29].

The cross section of the computational domain in 3D is the unit square, with
a radiation flux incident on the left boundary. The atomic number is location
dependent (only in x and y):

Z(x, y, z) =
{

10 for 1
3 ≤ x ≤ 2

3 and 1
3 ≤ y ≤ 2

3 ,
1 elsewhere. (3)

The boundary conditions for Equations (1) are set by imposing a constant
radiation field at x = 0:

n · DE∇E +
E

2
= 2 at x = 0 and n · DE∇E +

E

2
= 0 at x = 1,

and n ·∇E = 0 at y = 0 and y = 1,

where n is the outward unit normal to the boundary, as in [42]. The temperature
contours showing the propagation of the thermal front at t = 1 and t = 3 are
given in Figure 2.

Algorithmic Overview. Both of these nonlinear PDE-based applications employ
Newton-Krylov methods (see, e.g., [47]) within the PETSc library [5] to solve
nonlinear equations of the form f(u) = 0, where f : Rn → Rn, at each timestep
of the simulation. We use a two-step sequence of (approximately) solving the
Newton correction equation

(f ′(u!−1)) δu! = −f(u!−1) (4)
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Fig. 2. Evolution of material temperature in time for a 3D example with a tetrahedral
mesh of 237,160 vertices and 1,264,086 elements. The left figure shows the temperature
contours at t = 1, while the right shows temperature at t = 3.

and then updating the iterate via u! = u!−1 + δu!. If the Jacobian matrix f ′

is poorly conditioned, the Krylov method will require an unacceptably large
number of iterations. The system (4) can be transformed into the equivalent
form B−1f ′(u!−1)δu! = −B−1f(u!−1) through the action of a preconditioner,
B, whose inverse action approximates that of f ′, but at smaller cost. We thus
consider in Section 5 a variety of different preconditioners and Krylov methods,
with a goal of achieving low computational cost and scalable parallelism.

The radiation transport code uses an analytical second-order accurate Ja-
cobian matrix f ′, where the preconditioner is derived from the same matrix.
In contrast, the compressible Euler application employs matrix-free Newton-
Krylov methods (see, e.g., [15]), with which we compute the action of the Jaco-
bian on a vector v by directional differencing of the form f ′(u)v ≈ f(u+hv)−f(u)

h ,
where h is a differencing parameter. We use a first-order analytic discretization
to compute the corresponding preconditioning matrix.

For both applications, the time to solve the Newton correction equation (4),
is a significant fraction of overall execution time (about 35% for the radiation
transport code and about 75% for the compressible Euler code). Moreover, as
further discussed in Section 5, changes in the numerical characteristics of the
linear systems reflect the changing nature of the simulations. For example, the
use of pseudo-transient continuation [37] in the compressible Euler applica-
tion generates linear systems that become progressively more difficult to solve
as the simulation advances (see Figure 5). Likewise, the linear and nonlinear
systems become progressively more challenging as the timesteps (based on dy-
namical scales of the problem) increase in the radiation transport application
(see Figure 6). Consequently, both applications provide strong motivation for
the development of CQoS middleware to support multimethod adaptive linear
solver algorithms.
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4 Computational Quality of Service for Components

This section describes in detail our approach to defining and implementing com-
putational quality of service for components, which was introduced in Section 1.

4.1 Approach

We begin by reviewing the main requirements for enabling computational qual-
ity of service support in component-based scientific applications. First, we must
be able to monitor the performance of individual components without requir-
ing manual code modifications. The performance data must be collected and
stored for later access. Performance information alone, however, is not sufficient
to enable effective adaptive strategies in numerical software. Thus, we must also
identify nonfunctional quality metrics, which are problem- or algorithm-specific,
and nonintrusively record the resulting metadata corresponding to these met-
rics along with the performance data. The accumulated runtime information
can also be augmented with a priori or source-based analysis of algorithms,
whenever such are available. Given this combined database, the application
performance can be characterized by means of different approaches, including
machine learning and statistics. The results of such analyses would be used to
construct performance models for individual components or whole applications.
Finally, there must be a mechanism for specifying dynamic adaptation (compo-
nent reconfiguration or substitution) based on these performance models and
additional problem metadata.

Our goal is to address these requirements by providing middleware for
component- or service-oriented frameworks, with the CCA as our initial tar-
get component model. We rely on the discipline of interface definition, which
is at the core of both component- and service-based software engineering ap-
proaches, in order to automate the gathering of performance and other data,
as well as to enable automated dynamic reconfiguration and substitution of
computational units, expressed as either components or services.

The principal purpose of CQoS in the context of high-performance com-
puting is to provide methodology and support for optimizing the time to solu-
tion of component- or service-based applications. We have identified two main
ways through which this goal can be achieved: (1) by optimizing the selection
component instances for the initial composition of an application and (2) by
dynamically reconfiguring or substituting component instances.

4.2 Architecture

To support CQoS in scientific applications, we describe a high-level architecture
that is not dependent on a particular component or service model (Figure 3).
This architecture consists of two main parts: (1) measurement and analysis
components, which are responsible for monitoring and gathering performance
information and other metadata and for operating on and augmenting these
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data, and (2) control infrastructure, which consists of components that im-
plement domain-specific adaptive strategies, along with runtime services for
component reconfiguration and substitution. Work that has contributed to the
design of this architecture is described in [32,41,45,49,51,61].

Analysis Infrastructure
Performance monitoring, 
problem/solution characterization, 
and performance model building

Control Infrastructure
Interpretation and execution of control laws to 
modify an application’s behavior

Performance
Databases

(historical & runtime)

Interactive Analysis 
and Model Building

Substitution
Assertion
Database

Instrumented
Component

Application Cases

Control System
(parameter changes and
component substitution) Scientist can 

provide decisions 
on substitution and 
reparameterization

CQoS-Enabled
Component Application

Component A
Component B
Component C

Component
Substitution Set

Scientist can 
analyze data 
interactively

Fig. 3. CQoS middleware architecture overview.

The monitoring portion of the infrastructure deals with collecting perfor-
mance data, as well as domain-specific metadata that is related to or may
impact the performance of an application. The two main requirements for the
monitoring and data gathering support are that (1) minimal or no code changes
are needed to enable monitoring, and (2) the overhead of the data gathering
functionality is negligible with respect to the rest of the computation.

The analysis infrastructure consists of components that operate on any avail-
able performance data and associated metadata for individual components or
whole applications. Different types of analyses, for example statistical or ma-
chine learning, can be incorporated in order to derive a characterization, or
model, of the performance of an application or its constituent components. The
models generated by analyses or provided by developers are stored in the persis-
tent performance database, along with references to and from the performance
data from which they were generated. When performance models of individual
components are available, analysis components for generating whole-application
models, such as those described in [41], can be employed to derive a perfor-
mance model for an application composed from these components. Another
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source of performance models is analytic closed expressions for the execution
time provided by users or source code analysis tools. Such models are usually
less accurate and are limited by the complexity of the parameterization used.
While the accuracy of performance models can vary greatly, the availability of
such models is crucial for enabling CQoS support, both for initial application
composition and for runtime adaptation.

4.3 Implementation

While the high-level architecture described in Section 4.2 represents our vision
of the general structure of middleware for CQoS support, it does not dictate
low-level implementation details; thus, specialized implementations can be pro-
vided for different computational environments. Our current focus is on tightly
coupled high-performance architectures because the majority of our motivating
applications are written for such platforms using a single-program multiple-
data (SPMD) programming model. This does not preclude implementations
targeting more loosely coupled Grid-based environments, which would be able
to reuse at least some of the middleware analysis and control infrastructure
implementations.

We have implemented portions of the architecture described in Section 4.2;
an early prototype is described in [48]. The initial implementation provides auto-
mated performance instrumentation of C++ CCA components using the Tuning
and Analysis Utilities (TAU) software [54]. In addition to providing portable
instrumentation capabilities, TAU provides a database format definition, the
Performance Data Management Framework (PerfDMF) [33], for storing perfor-
mance data and other application metadata. In our initial implementation, we
leveraged the performance monitoring approach described in [41], extending it
to collect component-specific metadata in addition to performance metrics. For
example, in an application involving the solution of a nonlinear PDE using a
Newton-based solver, we monitor and record the number of nonlinear iterations.
Furthermore, we implemented context-sensitive monitoring of performance and
related metadata; for example, within each nonlinear solution, we monitor and
record the linear solver algorithm used, the preconditioner type, and the num-
ber of linear iterations (for iterative Krylov subspace solvers). In the database,
performance and algorithm-specific execution metadata is associated with an
application experiment, which is defined as an application instance consisting
of a set of component instances and their configurations. Including component
configuration parameters in the CQoS metadata is crucial because they can
significantly change the performance characteristics of an application; different
parameter values can result in drastically different performance for the same set
of components. For example, in a driven cavity fluid dynamics simulation [19],
the lid velocity and Grashof number determine to a large degree the difficulty
of the problem instance; in addition, algorithmic parameters, such as the initial
CFL number, affect the convergence speed and thus total execution time.
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Our initial use case for the CQoS infrastructure focuses on enabling adaptive
algorithms for the solution of nonlinear PDEs. In particular, we target multi-
method approaches to adaptive linear system solution, such as those described
in [10, 11, 44]. While it is possible to define application-independent adaptive
strategies based only on general data mining of the historical performance in-
formation, our initial approach is based on developing application or domain-
specific analysis and corresponding control components, which employ both the
performance information and the associated application-specific metadata. The
main disadvantage of this approach is that it is not generally applicable in a
black-box fashion to arbitrary applications for which we have gathered sufficient
performance data. A significant advantage, however, is that by focusing on de-
veloping analysis algorithms and adaptive strategies for a particular application
domain, we are able to construct much more accurate performance models and
more detailed control components, resulting in greater potential performance
improvements.

An implementation of a subset of the CQoS infrastructure for adaptive linear
solver components in time-dependent nonlinear PDE-based applications is illus-
trated in Fig. 4. New middleware components for monitoring the performance
of nonlinear and linear solver components and for recording algorithm-specific
metadata are introduced. An adaptive strategy component serves as a proxy
for a linear solver component, presenting the same public interface as a non-
adaptive linear solver component. The adaptive strategy can be implemented
as one or more components; in this case, it combines the analysis and control
portions of the CQoS architecture for selecting among different linear solver
algorithms throughout the nonlinear solution process.

Fig. 4. Adaptive linear solver components in nonlinear PDE applications: a typi-
cal component application without adaptivity (top) and the same application with
support for performance monitoring and adaptive linear solvers (bottom).
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We have developed a number of adaptive heuristics with various degrees of
generality. For example, an approach that is generally applicable to Newton-
based nonlinear system solution is to monitor the nonlinear rate of convergence
and switch linear solvers when a given threshold is reached. Approaches that
exploit some domain or application-specific knowledge in addition to the algo-
rithmic metadata can result in more effective adaptive behavior. For example, a
change in a physical parameter that is known to affect the characteristics of the
linear systems can be used to trigger linear solver component substitution. In
general, when designing new adaptive strategies, we exploit both application-
specific and algorithmic parameters whenever possible. Initial heuristics for a
new application domain may be fully manual, using human insight to guide the
adaptation, and gradually evolving into more automated strategies that include
more sophisticated analysis components.

5 Experimental Results

We used the Jazz cluster at Argonne National Laboratory to run the simulations
for the compressible Euler and radiation transport applications introduced in
Section 3. The cluster has a Myrinet 2000 network and 2.4 GHz Pentium Xeon
processors with 1-2 GB of RAM. We experimented with one problem instance
from each motivating application, both of which required the solution of large-
scale linear systems with sparse coefficient matrices. The compressible Euler
code generated Jacobian matrices of rank approximately 1.8×106 with 1.3×108

nonzeros, while the radiation transport code generated matrices of rank 4.5×105

with 6.3 × 106 nonzeros. We ran the simulations on four processors using base
solvers composed of various Krylov methods and subdomain solvers for a block
Jacobi preconditioner with one block per processor.

We compare the performance of the simulations using adaptive solvers with
that of the base solvers. Use of adaptive solvers can improve the overall per-
formance by dynamically selecting the most appropriate method to match the
needs of the current linear system, such as combining more robust (but more
costly) methods when needed in particularly challenging phases of solution with
faster (though less powerful) methods in other phases. Adaptive solvers can be
defined by the heuristic employed for method selection. The efficiency of an
adaptive heuristic depends on how appropriately it determines switching points,
or the iterations at which to change linear solvers. In this paper we employed
sequence-based adaptive heuristics, which rely on a predetermined sequence of
linear solvers and then “switch up” to a more robust but more costly method
or “switch down” to a cheaper but less powerful method as needed during the
simulation. The sequence of base solvers is ordered by the average time per
nonlinear iteration required by each solver. This measurement provides a rough
estimate of the strength of the linear solver.
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5.1 Transonic Euler Flow

Solver Specifications. We employed the following four base solvers, consisting of
a Krylov method and block Jacobi preconditioner with one block per processor
with the specified subdomain solver:

1. GMRES with SOR as a subdomain solver, designated as GMRES-SOR
2. Bi-conjugate gradient squared (BCGS) with no-fill incomplete factorization

(ILU(0)) as the subdomain solver, called BCGS-ILU0
3. Flexible GMRES (FGMRES) with ILU(0) as the subdomain solver, desig-

nated as FGMRES-ILU0
4. GMRES with ILU(1) as a subdomain solver, designated as GMRES-ILU1

Adaptive Heuristics. The compressible Euler code uses pseudo-transient con-
tinuation [37] to advance the solution to an assumed steady state. The CFL
number [37] provides a good indication of the relative difficulty of the resulting
Newton system, with lower CFL numbers indicating systems that are better
conditioned and thus easier to solve than those with higher CFL numbers. The
left-hand graph of Figure 5 shows that the change in CFL number is inversely
reflected by the change in the nonlinear residual norm. Thus, the nonlinear
residual norm is a good indicator of the level of difficulty of solving its corre-
sponding Newton correction equation: the lower the residual norm, the more
difficult the linear system. Based on trial runs of the application, we divided the
simulation into four sections: (a) ||f(u)|| ≥ 10−2, (b) 10−4 ≤ ||f(u)|| < 10−2,
(c) 10−10 ≤ ||f(u)|| < 10−4, and (d) ||f(u)|| < 10−10. Whenever the simulation
crosses from one section to another, the adaptive method switches up or down
accordingly.

The relative linear convergence tolerance was 10−3, and the maximum num-
ber of iterations for any linear solve was 30. We ordered these methods for use
in the adaptive solver as 1, 2, 3, 4, according to the average time taken per non-
linear iteration in the first-order discretization phase of the simulation, which
can serve as a rough estimate of the strength of the various linear solvers for
this application.

Results. The right-hand graph of Figure 5 show the switching points among
these methods in the adaptive polyalgorithmic approach. The simulation starts
with method 1, then switches to method 2 at the next iteration. The switch to
method 3 occurs at iteration 25. The discretization then shifts to second order at
iteration 28, and the initial linear systems become easier to solve. The adaptive
method therefore switches down to method 2. From this point onward, the
linear systems become progressively more difficult to solve as the CFL number
increases; the adaptive method switches up to method 3 in iteration 66 and
method 4 in iteration 79. The last change is accompanied by an increase in the
time taken for the succeeding nonlinear iteration. This increased time is devoted
to setting up the new preconditioner, which in this case changes the block Jacobi
subdomain solver from ILU(0) to ILU(1) and consequently requires more time
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and adaptive solvers on 4 processors. Right: Time per nonlinear iteration for the base
and adaptive solvers on 4 processors.The labeled square markers indicate when linear
solvers changed in the adaptive algorithm.

for the factorization phase. The execution time of the adaptive polyalgorithmic
scheme is 3% better than the fastest base method (FGMRES-ILU0) and 20%
better than the slowest one (BCGS-ILU0).

5.2 Radiation Transport

Solver Specifications. We employed the following four base solvers, consisting of
a Krylov method and block Jacobi preconditioner with one block per processor
with the specified subdomain solver:

1. GMRES with SOR as a subdomain solver, designated as GMRES-SOR
2. Flexible GMRES (FGMRES) with ILU(0) as a subdomain solver, desig-

nated as FGMRES-ILU0
3. GMRES with ILU(0) as a subdomain solver, designated as GMRES-ILU0
4. Bi-conjugate gradient squared (BCGS) with with ILU(0) as a subdomain

solver, designated as BCGS-ILU0

The relative linear convergence tolerance was 10−3 and the maximum number
of iterations for any linear solve was 80.

Adaptive Heuristics. In contrast to the previous application, the radiation trans-
port code completely solves a nonlinear system at each time step. The number
of nonlinear iterations (4-10) required for convergence of each nonlinear system
is quite small, rendering the use of adaptive solvers specific to each nonlinear
solution unnecessary. However, the difficulty of the nonlinear systems them-
selves varies over the timesteps, and this factor can be utilized to generate
adaptive solvers. Thus, the linear solvers stay constant during the solution of
each nonlinear system but may change as the nonlinear equations change with
the timesteps.

The left-hand graph of Figure 6 plots the timestep size with respect to the
simulation’s progress. We sampled the average time per iteration at timestep
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intervals of 1 second. The right-hand graph shows the average time per iteration
of the base solvers at these intervals. We note that although solvers 1 and 4
remain in their highest and lowest positions, the relative order of solvers 2 and
3 varies, especially between the time steps 2 and 3. Thus the sequence of solvers
is 1, 2, 3 and 4, except in the interval (2-3 seconds), where the sequence is 1, 3,
2 and 4.

Fig. 6. Left: Change in timestep size over the simulation. Right: Change of average
time per nonlinear iteration as simulation progresses. From left to right the bar indi-
cates average time per iteration of solvers 1, 2, 3, and 4 within the timestep interval
given in the x-axis. The legend shows the average time for each solver, over the entire
simulation.

In addition to the timestep, a good indicator of the difficulty of the prob-
lem is the ratio of the linear iterations to nonlinear iterations. As the relative
difficulty of the nonlinear system increases, this ratio increases correspondingly.

Results. We experimented with an automated adaptive solver, where the lin-
ear solver changes with change in the ratio of the linear to nonlinear iterations
increases by 10%. Generally we switched to a faster solver if the increase was
more than 10%; however, the ratio increased significantly in the first few step
up to 30%. Therefore we switched from solver 1 to solver 3 skipping the in-
termediate solver 2. Another aberration to this rule was in the (2-3 second)
interval where, since solvers 2 and 4 have nearly the same average time per
iteration, we switched from solver 4 to solver 2 when the ratio increased by
10%. Since a switch in solvers can potentially increase the time, chiefly because
of data structure manipulations needed when resetting the Krylov method and
preconditioner, we kept the solver fixed for a window of at least four timesteps
and then switched if necessary.

The solver switches shown in Figure 7 are as follows. The simulation begins
with method 1 and switches to method 3 at time step 6, and then to method
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4 at timestep 10. The next switch occurs at time step 552 to method 2. Then
at timestep 740 the solver is changed to method 3, and finally at step 744 the
solver becomes method 4 and this is maintained to the end. The automated
adaptive solver is 1.2% better than the fastest base method (BCGS-ILU(0))
and 42.0% better than the slowest method (GMRES-SOR).
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These preliminary experiments with the two motivating applications high-
light the promise of adaptive solvers in the context of long-running simulations
in which a single algorithm may not perform best throughout the entire simula-
tion. These experiments also emphasize that solver performance differs consider-
ably across application domains. For example, while BCGS-ILU(0) performed
well for the radiation transport code, it was not the best performer for the
transonic Euler code. The experiments also show that heuristics for adaptive
multimethod solvers depend on the nature of the application.

Ongoing work includes applying these insights in adaptive strategies to
larger problem instances of the radiation transport and transonic Euler applica-
tions. We are also working to incorporate scalable solver components [56] under
development by the Terascale Optimal PDE Simulations (TOPS) project [20],
which define a common interface through which one can provide easy access
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to a broad range of scalable solvers developed by different groups at different
institutions.

6 Conclusions

Motivated by the emerging needs of high-performance component-based sci-
entific applications, we have introduced a general middleware architecture for
computational quality of service, which provides support for runtime adapta-
tion of component- or service-based applications with the goal of reducing the
overall time to solution. We described an initial implementation of the CQoS
architecture for CCA components, which provides support for adaptive algo-
rithms, such as linear system solution. We demonstrated the effectiveness of this
adaptive approach on parallel simulations of radiation transport and transonic
Euler flow. While our current emphasis is on SPMD component applications, the
overall architecture can be implemented in other contexts, such as distributed
components and service-based applications.

Our current work focuses on refining the initial implementation to conform
more closely to the CQoS overall architecture, including separation of analysis
and control middleware components, as well as a robust implementation of the
database management components. Future plans include adding more general
analysis algorithms for extracting performance characteristics using statistical
and machine learning methods [9] and leveraging related work by Eijkhout and
Fuentes [26] on matrix characterization and metadata. We also will continue to
explore the use of our CQoS approach in new application domains.
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